Supernova behind brightest gamma-ray burst of all time in 2022: Study

0
42
Supernova behind brightest gamma-ray burst of all time in 2022: Study
Advetisment

New Delhi, April 12 (IANS) The brightest gamma-ray burst (GRB) ever recorded by scientists, in October 2022, was the result of a collapse and subsequent explosion of a massive star, or supernova, revealed a new study on Friday.

The burst known as GRB 221009A — dubbed the B.O.A.T. (“brightest of all time”) — is the largest explosion since the Big Bang.

It was found to occur once in every 10,000 years and was 70 times brighter than any yet seen.

The supernova was discovered using the powerful next-generation James Webb Space Telescope (JWST), said researchers from Northwestern University in the US, who were also among the international group of scientists to discover B.O.A.T.

In the research, published in the journal Nature Astronomy, the team speculated that evidence of heavy elements, such as platinum and gold, might reside within the newly uncovered supernova.

The team’s extensive search did not find evidence of these elements, yet they noted that the origin of heavy elements in the universe continues to remain one of astronomy’s biggest open questions.

“When we confirmed that the GRB was generated by the collapse of a massive star, that gave us the opportunity to test a hypothesis for how some of the heaviest elements in the universe are formed,” said lead author Peter Blanchard, a postdoctoral fellow at Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

“We did not see signatures of these heavy elements, suggesting that extremely energetic GRBs like the B.O.A.T. do not produce these elements. That doesn’t mean that all GRBs do not produce them, but it’s a key piece of information as we continue to understand where these heavy elements come from. Future observations with JWST will determine if the B.O.A.T.’s ‘normal’ cousins produce these elements,” he added.

Blanchard started his search, about six months after the GRB was initially detected.

It is because GRB was so bright that it obscured any potential supernova signature in the first weeks and months after the burst, he said.

Using the JWST’s Near Infrared Spectrograph he observed the object’s light at infrared wavelengths and found the characteristic signature of elements like calcium and oxygen typically found within a supernova.

“Surprisingly, it wasn’t exceptionally bright — like the incredibly bright GRB that it accompanied,” he said.

–IANS

rvt/vd

Go to Source

Disclaimer

The information contained in this website is for general information purposes only. The information is provided by TodayIndia.news and while we endeavour to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the website for any purpose. Any reliance you place on such information is therefore strictly at your own risk.

In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of this website.

Through this website you are able to link to other websites which are not under the control of TodayIndia.news We have no control over the nature, content and availability of those sites. The inclusion of any links does not necessarily imply a recommendation or endorse the views expressed within them.

Every effort is made to keep the website up and running smoothly. However, TodayIndia.news takes no responsibility for, and will not be liable for, the website being temporarily unavailable due to technical issues beyond our control.

For any legal details or query please visit original source link given with news or click on Go to Source.

Our translation service aims to offer the most accurate translation possible and we rarely experience any issues with news post. However, as the translation is carried out by third part tool there is a possibility for error to cause the occasional inaccuracy. We therefore require you to accept this disclaimer before confirming any translation news with us.

If you are not willing to accept this disclaimer then we recommend reading news post in its original language.

Advertisment