HomeTechnologyNew IASST study shows bimetallic NiFe systems best for water splitting

New IASST study shows bimetallic NiFe systems best for water splitting

New Delhi, July 16 (IANS) A bimetallic Nickel Iron layered double hydroxide system is best for efficient oxygen production through water splitting, claimed a new study by the Institute of Advanced Study in Science and Technology (IASST) in Guwahati, under the Department of Science and Technology (DST) on Tuesday.

The study showed that the novel method removes the current trends of research to find trimetallic solutions for increasing productivity in this system.

“Water splitting serves as a beacon of hope in the quest for sustainable energy solutions. It can be reckoned as a sustainable and eco-friendly way to generate green and pure hydrogen and oxygen on a larger scale without harming the flora and fauna,” noted the study by IASST.

To explore ways of increasing the efficiency of water splitting, the team assessed one of the two important reactions that come into play — hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER).

The study focused on the understanding of the oxygen evolution ability of Nickel-Iron Layered double hydroxides. This is because improving the efficiency of the OER contributes to the overall efficiency of water-splitting processes, said the team led by Biswajit Choudhury and the main author Suvankar Deka.

In addition to NiFe Layered Double Hydroxide (LDH), they synthesised two other trimetallic systems ZnNiFe layered double hydroxide and CoNiFe LDH, and investigated its electrocatalytic activity in 1M KOH.

Strikingly, the OER activity of the trimetallic systems was found to be slower than the bimetallic system. The research provided mechanistic Insights into electrocatalytically reduced OER performance in marigold-like trimetallic NiFe-based LDH.

Their investigation accepted for publication in the Journal of Materials Chemistry A, revealed that the reduced activity in the trimetallic system can be attributed to breakage in the charge transfer chain of Ni-O-Fe-O-Zn and Ni-O-Fe-O-Co moieties (part of a molecule) as well as confinement of phonons (quantum of vibrational energy).

This leads to the trapping of charge carriers affecting the reaction pathway and kinetics resulting in reduced water oxidation activity.

The study suggests that doping of the bimetallic NiFe system does not improve its water splitting efficiency and can help in focussed research on finding ways of improving the bimetallic system for oxygen generation through overall splitting.

–IANS

rvt/svn

Go to Source

Disclaimer

The information contained in this website is for general information purposes only. The information is provided by TodayIndia.news and while we endeavour to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the website for any purpose. Any reliance you place on such information is therefore strictly at your own risk.

In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of this website.

Through this website you are able to link to other websites which are not under the control of TodayIndia.news We have no control over the nature, content and availability of those sites. The inclusion of any links does not necessarily imply a recommendation or endorse the views expressed within them.

Every effort is made to keep the website up and running smoothly. However, TodayIndia.news takes no responsibility for, and will not be liable for, the website being temporarily unavailable due to technical issues beyond our control.

For any legal details or query please visit original source link given with news or click on Go to Source.

Our translation service aims to offer the most accurate translation possible and we rarely experience any issues with news post. However, as the translation is carried out by third part tool there is a possibility for error to cause the occasional inaccuracy. We therefore require you to accept this disclaimer before confirming any translation news with us.

If you are not willing to accept this disclaimer then we recommend reading news post in its original language.

RELATED ARTICLES
- Advertisment -

Most Popular