HomeTechnologyINST Mohali's new tech to create cost-effective devices for wearable applications

INST Mohali’s new tech to create cost-effective devices for wearable applications

New Delhi, Aug 2 (IANS) A team of researchers from the Institute of Nano Science and Technology (INST) Mohali, an autonomous institute of the Department of Science and Technology, have developed a new technology that can help create cost-effective devices for wearable applications.

Their droplet microfluidics technology will help produce microspheres with a high electroactive (EA) phase that can lead to piezoelectric devices for wearable applications, serving as self-powered sensors for monitoring diverse physiological signals.

“Integration of this technology into wearables opens new pathways for efficient energy harvesting from human motion, paving the way for sustainable and self-sufficient wearable devices,” said the researchers.

“The method offers numerous advantages, including simplicity, cost-effectiveness, high efficiency, and control, making it highly significant for applications in the biomedical sector, self-powered devices, and beyond,” they added.

The technology, when combined with the off-chip thermal polymerisation technique, helps synthesise tunable Polyvinylidene fluoride (PVDF) microspheres to engineer a high EA phase.

Polymer microspheres, notable for their increased surface area and enhanced interface capabilities, have attracted substantial interest. However, existing methods for their production possess drawbacks such as shape irregularities and high energy requirements. To address these limitations, microfluidic techniques have emerged, offering benefits like tunability, size and shape control, and efficiency.

Over the past years, microspheres of PVDF have been produced via microfluidics but the presence of high EA phase in them remains a challenge.

In the study, the team from INST engineered the high EA phase of microspheres through flow rates of oil and polymer solution in the microfluidic device and extensive characterisation was carried out to verify the piezoelectric response of the microspheres. The team brought about uniformity and size control (126-754 micrometres) of the microspheres. By adjusting flow rates and optimising reaction temperature, the EA phase was enhanced to around 82 per cent.

In addition, artificial intelligence (AI) was used as a vital tool in enabling accurate predictions for microsphere diameter and phases, reducing the need for extensive laboratory optimisation before droplet generation in microfluidics. The study was recently published in the Chemical Engineering Journal.

–IANS

rvt/vd

Go to Source

Disclaimer

The information contained in this website is for general information purposes only. The information is provided by TodayIndia.news and while we endeavour to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the website for any purpose. Any reliance you place on such information is therefore strictly at your own risk.

In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of this website.

Through this website you are able to link to other websites which are not under the control of TodayIndia.news We have no control over the nature, content and availability of those sites. The inclusion of any links does not necessarily imply a recommendation or endorse the views expressed within them.

Every effort is made to keep the website up and running smoothly. However, TodayIndia.news takes no responsibility for, and will not be liable for, the website being temporarily unavailable due to technical issues beyond our control.

For any legal details or query please visit original source link given with news or click on Go to Source.

Our translation service aims to offer the most accurate translation possible and we rarely experience any issues with news post. However, as the translation is carried out by third part tool there is a possibility for error to cause the occasional inaccuracy. We therefore require you to accept this disclaimer before confirming any translation news with us.

If you are not willing to accept this disclaimer then we recommend reading news post in its original language.

RELATED ARTICLES
- Advertisment -

Most Popular